- 1.7 Solving Absolute Value Inequalities

- Example: $2 x+3>2$ and $5 x<10$
- This is a conjunction because the two inequality statements are joined by the word "and".
- You must solve each part of the inequality.
- The graph of the solution of the conjunction is the intersection of the two inequalities. Both conditions of the inequalities must be met.
- In other words, the solution is wherever the two inequalities overlap.
- If the solution does not overlap, there is no solution.

- Example: $3 x \leq 15$ or $-2 x+1 \geq 0$
- This is a disjunction because the two inequality statements are joined by the word "or".
- You must solve each part of the inequality.
- The graph of the solution of the disjunction is the union of the two inequalities. Only one condition of the inequality must be met.
- In other words, the solution will include each of the graphed lines. The graphs can go in opposite directions or towards each other, thus overlapping.
- If the inequalities do overlap, the solution is all reals.

Two Different Ways

-1. $8<m+6<14$
-2. $8<m+6$ and $m+6<14$

These inequalities can be solved using two methods.

Example : $8<m+6<14$
Rewrite the compound inequality using the word "and", then solve each inequality.

$$
\begin{array}{lcc}
8<m+6 & \text { and } & m+6<14 \\
2<m & & m<8 \\
m>2 & \text { and } & m<8 \\
& 2<m<8 &
\end{array}
$$

Graph the solution:

Method Two

Example: $8<m+6<14$
To solve the inequality, isolate the variable by subtracting 6 from all 3 parts.

$$
\begin{gathered}
8<m+6<14 \\
-6<6 \\
\hline 2<m<8
\end{gathered}
$$

Graph the solution.

Example: $x-1>2$ or $x+3<-1$

$$
\begin{gathered}
x>3 \quad x<-4 \\
x<-4 \text { or } x>3
\end{gathered}
$$

Graph the solution.

Solving an Absolute Value Inequality

Step 1: Rewrite the inequality as a conjunction or a disjunction.

- If you have a <or \leq you are working with a conjunction or an 'and' statement. Remember: "Less thand"
- If you have a $>$ or \geq you are working with a disjunction or an ' $\boldsymbol{\sigma}$ ' statement.
Remember: "Greator"
- Step 2: In the second equation you must negate the right hand side and reverse the direction of the inequality sign.
- Solve as a compound inequality.

Example 1:

- $|2 x+1|>7$
- $2 x+1>7$ or $2 x+1>7$
- $2 x+1>7$ or $2 x+1<-7$
- $\quad x>3$ or $x<-4$

This is an 'or' statement. (Greator). Rewrite.

In the $2^{\text {nd }}$ inequality, reverse the inequality sign and negate the right side value.

Solve each inequality.
Graph the solution.

Example 2:

- $|x-5|<3$

This is an 'and' statement. (Less thand).

- $x-5<3$ and $x-5<3$
- $\mathrm{x}-5<3$ and $x-5>-3$
- $\quad x<8$ and $x>2$
- $2<x<8$

Rewrite.
In the 2nd inequality, reverse the inequality sign and negate the right side value.

Solve each inequality.

Graph the solution.

-1) $4 m-5>7$ or $4 m-5<-9$
-2) $3<x-2<7$
-3) $|y-3|>1$
-4) $|p+2|<6$

